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The study concerned the computation of dispersion coefficients for a small stream using numerical 
solutions of the advection-dispersion model and observed temporal solute concentration profiles. 

Application of the model to simulate the physical processes of solute transport in streams, in most 

practical situations, requires the use of a numerical solution with appropriate values of the 

parameters. The selection of a proper value of the dispersion coefficient is the basic task. 

Computation of the physical dispersion coefficient using numerical schemes by optimization may 
include artificial mixing caused by truncation terms. Hence, an error analysis using the modified 

equation approach complements the results obtained by optimisation. Additionally, the optimisation 

results can be influenced by the relative significance of the transport processes, characterised by the 

Peclet number (Pe). Four numerical schemes were used: Back-Time/Centred-Space, Crank-Nicolson, 

Implicit QUICK and QUICKEST. Optimal parameter values were obtained for several values of Pe 
by changing the magnitude of the space step. Reference values were obtained using a routing 

procedure. Optimised dispersion coefficients showed the presence, or absence, of artificial mixing 

in the numerical solutions in agreement with the error analysis for Pe < 5.0. Thus only Crank-

Nicolson and QUICKEST were reliable in this range of Pe. To different degrees, all the methods 
gave unreliable physical dispersion coefficients for Pe values greater than 6.0. None of the schemes  

is recommended for use at larger Pe: instead, the space step should be reduced so that Pe < 5. 

KEYWORDS: Dispersion coefficient, artificial mixing, numerical methods, optimisation, Peclet 

number, modified equation.  

NOTATION 

C Concentration (µg/l) 

Dn Numerical dispersion (m2/s) 

K Physical dispersion coefficient (m2/s) 

Kn Numerical dispersion coefficient (m2/s) 

Pe Peclet number 
t  Time (s) 

t Time step (s) 

 Cross-section average velocity of flow (m/s)

x  Longitudinal coordinate direction (m)

x  Space step (m)
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1. INTRODUCTION 

The advection-dispersion model (AD-model) is investigated by estimating the 

dispersion coefficient using numerical methods.  Various numerical solutions of the AD-

model have been proposed using finite difference and finite volume approaches. These 

solutions have varying properties related to stability, consistency and accuracy (Abbott and 

Basco, 1989; Versteeg and Malalasekera, 2007), and not all of them are equally suitable 

(Wallis, 2007; Szymkiewicz, 2010). Basically, numerical methods are derived from a 

Taylor series expansion and a truncation error is always present. Mathematically, such 

terms introduce errors  commonly known as numerical diffusion and numerical dispersion 

(Szymkiewicz, 2010).  In the context of the application of the AD-model to mixing in 

rivers, the numerical diffusion enhances the physical dispersion. Since, physically, 

diffusion and dispersion are different processes, and dispersion has two quite different  

meanings to mathematicians and water-quality modellers, here we use the term artificial 

mixing when discussing the effects of numerical diffusion and numerical dispersion. 

The numerical errors are also influenced by the numerical grid resolution, which is 

characterised by numerical properties, namely, the advection number and the dispersion 

number. Commonly, these properties are characterised in terms of the Peclet number (Pe) 

which allows one to define the involvement of transport by both advection and dispersion. 

Numerical problems appear for high values of Pe when the transport is dominated by 

advection (Abbott and Basco, 1989; Versteeg and Malalasekera, 2007). Therefore, it is 

important that the properties of a scheme are considered when discretizing the 

computational domain. In this study, the AD-model was investigated using four Eulerian  

numerical methods. Also, a routing procedure was used to provide reference values  of the 

physical dispersion coefficient, K.  Furthermore, the modified equation approach 

(Warming and Hyett, 1974; Szymkiewicz, 2010) was used to investigate the presence of 

artificial mixing in the numerical methods. 

2. SOLUTE TRANSPORT MODELLING 

This section provides brief background information on the AD-model, the numerical 

methods used and the modified equation approach. 

2.1 THE ADVECTION-DISPERS ION MODEL 

Mixing in streams is primarily caused by longitudinal dispersion which results from 

the stretching effect of velocity gradients. In applying the AD-model, the longitudinal 

dispersion coefficient measures the rate of longitudinal mixing of a solute cloud, and the 

cross-sectional average velocity defines the rate of downstream movement of the 

dispersant (Chanson, 2004). Commonly mixing rates and cross-sectional average 

velocities are assumed constant and the AD-model is written as (Rutherford, 1994), 
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The AD-model is applied through its solutions and requires calibration, i.e. estimation 

of its parameters,  and K (Chanson, 2004). Calibration using a numerical method 

commonly involves an error, especially in K (Szymkiewicz, 2010). The lack of assessment 

of the error can result in wrong conclusions about the value of K. Thus, the calibrated value 

of K may be a combination of its physical value and the error induced by the scheme. Thus, 

calibration by optimization can result in an incorrect value of the searched K.  The issue 

may be solved if one is able to split the effect of the error from K. Following Warming and 

Hyett (1974) and Szymkiewicz (2010), the modified equation approach is a helpful tool in 

this regard. This involves substituting Taylor series expansions into the numerical 

algorithm and identifying temporal and spatial derivatives that might be a source of 

numerical error. The approach aims to express the modified AD-model as: 
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The modified AD-model includes additional terms on the right-hand side of Equation 

(2), which introduce unwanted errors commonly known as numerical diffusion (Kn) and 

numerical dispersion (Dn). Similar minor errors are introduced by higher order terms. In 

the application of the model, Dn encourages the appearance of oscillations in numerical 

solutions (Szymkiewicz, 2010). Kn enhances the physical dispersion causing greater 

longitudinal spreading (Chapra, 2008, Szymkiewicz 2010). It is important to recognize in 

the solution the consequences of both Kn and Dn. 

Numerical methods are derived by converting the AD-model into algebraic difference 

equations that can be solved for values not known at incremental points in space and time 

(Wallis, 2007; Chapra, 2008).  Usually, the main challenge is the formulation of an 

appropriate scheme for the advective contribution to the solution (Versteeg and 

Malalasekera, 2007; Wallis, 2007). This is influenced by grid discretization which is 

characterised by non-dimensional numerical properties (Versteeg and Malalasekera, 2007;  

Wallis, 2007), namely, the advection number,  the dispersion number and their ratio, Pe 

(Abbott and Basco, 1989; Chapra, 2008). Pe  v x K   defines the relative strength of 

transport by advection to transport by dispersion. Numerical problems arise for large 

values of Pe (Szymkiewicz, 2010), depending on the numerical method.  

2.2 NUMERICAL SCHEMES 

There are several numerical methods depending on the discretisation app roach, the 

solution method and the order of the scheme, which all have an influence on their 

performance.  Despite that the order gives an intuition into its performance, the modified  

equation approach summarised above is more revealing. In this study, the AD-model was 

applied using the following four numerical methods: comments on artificial mixing are 

taken from the results of the modified equation approach given by Silavwe et al. (2019). 

The Back-Time/Centred-Space method (BTCS) is a finite difference scheme in which 

the transported variable at the new time level is evaluated in terms of other unknown 

variable values at the new time level, requiring the solution of a set of simultaneous 
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equations. This method is first-order accurate in time and second-order accurate in space 

and is unconditionally stable (Chapra, 2008; Szymkiewicz, 2010). The method induces 

numerical diffusion which depends only on the time step and velocity, i.e. Kn = 2t/2. 

The Implicit QUICK method (IQK) is a finite volume approach with control volume 

face values of the transported variable expressed in terms of an upstream weighted 

parabolic interpolation and spatial gradients of the transported variable expressed u sing 

linear interpolation (Leonard, 1979; Versteeg and Malalasekera, 2007). The scheme is 

first-order accurate in time and third-order accurate in space. Its implicit nature offers 

unconditional stability. The scheme induces the same value of numerical diffusion as the 

BTCS method. 

The Crank-Nicolson method (CN) is a finite difference scheme and it employs a 

centred-time/centred-space approach, in which values of the transported variable at the 

new time level are evaluated in terms of variable values from both the old and the new 

time levels, requiring the solution of a set of simultaneous equations. The scheme is 

second-order accurate in time and space. The scheme is unconditionally stable (Chapra 

2008; Szymkiewicz, 2010) and does not induce numerical diffusion.  

The QUICKEST (Leonard, 1979) method (QKST) is a finite volume approach like the 

QUICK method. It uses upstream weighted parabolic interpolation of the QUICK method 

(Abbott and Basco 1989, Versteeg and Malalasekera 2007). It is an explicit formulation  

and includes estimated streaming terms to account for advection and dispersion occurring 

during the time step (Leonard 1979). The scheme is third-order accurate in space but is 

conditionally stable (Leonard, 1979). The scheme does not induce numerical diffusion: it 

is also free from numerical dispersion, unlike the other three schemes . 

3. TRACER DATA 

The data for the study consisted of concentration-time profiles obtained from twelve 

experiments conducted on the Murray Burn which flows through the Riccarton campus of 

Heriot-Watt University in Edinburgh, U.K. (Heron, 2015). The experiments consisted of a 

gulp release of a known mass of Rhodamine WT tracer at an injection site upstream of two 

sampling sites at which water samples were collected. The samples were analysed using a 

Turner Designs Model 10 fluorometer (Heron, 2015). The flow rates for the experiments  

ranged from 0.017 m3/s to 0.436 m3/s. However, only three sets representing low (0.036 

m3/s; Experiment 2), medium (0.084 m3/s; Experiment 4) and high (0.150 m3/s; 

Experiment 11) flow rates were used in this study. The main characteristics of the site 

were, reach length 184 m, mean width 2.40m and mean slope 0.009 (Heron, 2015). 

4. PARAMETER ESTIMATION 

Analysis of observed concentration profiles  with the numerical solutions of the AD-

model to estimate the parameters required an inverse modelling technique. The inverse 

modelling tools were developed in Excel. Parameter estimation involved optimisation by 

fitting a predicted profile to the measured data points  downstream by optimizing  and K 

(Silavwe et al. 2019). To investigate the influence of non-dimensional numerical properties 

the numerical methods were applied to each data set over a range of space steps (4.00 m to 

30.667 m), such that optimisation of the model parameters was obs erved under different 
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values of the non-dimensional numerical properties . A routing procedure (SB) was used to 

determine reference values of K (Singh and Beck, 2003). This employs a semi-analytical 

convolution integral solution of the AD-model. It only yields solutions in the time domain  

and is subject to temporal integration numerical errors. Nevertheless , its solutions provide 

a useful guideline for assessing the results of the other methods. 

5. RESULTS AND DISCUSSION 

All numerical schemes behaved conservatively, and simulations were stable, except for 

QKST at small space steps. The results obtained from optimisations were concentration 

simulations, optimised dispersion coefficients and velocities. Concentration simulations 

were assessed by the sum of squared errors statistic (SSE) evaluated between observed and 

modelled concentrations at the downstream boundary of the reach. 

Figure 1 shows a composite plot of the simulated concentration profiles from all four 

methods and the observed profile of Experiment 11 for one value of Pe, namely, 9.070. 

Similar results were observed for Experiments 2 and 4. Figure 1 shows that all simulated  

profiles are distorted, being characterised by undershoots and more spreading than the 

observed data, reflecting errors due to numerical dispersion at high Pe. At much lower Pe 

there was very little difference between the simulated profiles from the four methods. 

Figure 2 shows a plot of the SSE against Pe for Experiment 11. Similar results were 

observed from Experiments 2 and 4. In general, simulation errors increased with increasing 

Pe for all the numerical methods . Generally, the finite difference methods gave higher 

simulation errors than finite volume methods. This reflects the order of accuracy of the 

methods described earlier. 

 

 
Figure 1.  Simulation results for the four numerical methods Pe = 9.1, Experiment 11. 
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Figure 2.  Plot of the sum of squared errors versus Peclet number, Experiment 11. 

 

Figures 3 to 5 show plots of optimized K obtained by all numerical methods against Pe 

for the three experiments. The figures also show the reference K estimated by the SB 

routing procedure.  It should be noted that the values of Pe were calculated using the 

parameter values from the SB routing procedure so that results could be easily compared. 

It can be observed that for Pe < 5, the results fall into two noticeable groups. Here, CN 

and QKST yield optimised dispersion coefficients that agree closely with that given by the 

SB routing procedure; BTCS and IQK yield values that are considerably lower. This is 

consistent with the error analysis of the modified equation approach, which predicts the 

presence of numerical diffusion (Kn). Table 1 shows the calibrated K values (row 2) and 

the Kn values (row 4) of the BTCS scheme from Experiment 4. Adding these values give 

results that are close to the SB routing procedure values. Note that for BTCS and IQK the 

optimised dispersion coefficient is underestimated even as Pe approaches zero because the 

numerical diffusion, being dependent on t, is always present. For Pe > 6.0, estimated K 

for all numerical methods diverge from the value obtained for Pe < 5.0. Those from CN 

and BTCS show a small increase (due to numerical dispersion) whilst those from IQK and 

QKST show a large decrease (due to numerical diffusion) in estimated K with an increase 

in Pe. Silavwe et al. (2019) expands on these issues. 

 

 

 
Figure 3.  Plot of optimized dispersion coefficients versus Peclet number, Experiment 2. 
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Figure 4.  Plot of optimised dispersion coefficient versus Peclet number, Experiment 4. 

 

 

 
Figure 5.  Plot of optimised dispersion coefficient versus Peclet number, Experiment 11. 

 

Table 1  

K,  and Kn for BTCS (Exp. 4, t = 30 seconds) for a range of Pe. 

 
 

6. CONCLUSION 

Four numerical methods of the AD-model were applied to observed solute 

concentration data from three tracer experiments under similar grid resolutions. Optimal 

dispersion coefficients and velocities were computed over a range of Pe; from 1.2 to 9.1. 

The behaviour of the methods was generally consistent with the known presence or 

absence of artificial mixing (derived from the modified equation approach). In this regard, 

numerical diffusion in BTCS and IQK significantly reduced the computed dispersion 

coefficient for Pe < 5, whilst computations with CN and QKST, which contain no 

Pe 1.2 1.4 1.7 2.2 2.4 2.5 2.7 3.4 3.6 3.9 4.2 4.9 5.4 6.0 6.8 7.8 9.1

K  (m
2
/s) 0.173 0.173 0.173 0.175 0.175 0.176 0.177 0.181 0.183 0.186 0.189 0.199 0.205 0.214 0.225 0.238 0.254

 v  (m/s) 0.150 0.150 0.151 0.151 0.151 0.151 0.152 0.153 0.153 0.153 0.154 0.155 0.156 0.157 0.158 0.160 0.162

K n (m
2
/s) 0.339 0.340 0.341 0.343 0.344 0.344 0.345 0.349 0.351 0.353 0.355 0.360 0.364 0.369 0.376 0.384 0.396
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numerical diffusion, produced reliable optimised dispersion coefficients in the same Pe 

range. For Pe > 6 results from all methods were poor with errors becoming more prominent  

with increasing Pe, this being generally consistent with the predictions of the modified 

equation approach at high Pe. For high Pe optimised dispersion coefficients for CN and 

BTCS increased from the values in the lower Pe range (due to numerical dispersion) whilst  

those from IQK and QKST showed a substantial decrease from the values in the lower Pe 

range (due to numerical diffusion). Consequently, only the CN and QKST schemes are 

recommended for use for Pe < 5. None of the schemes is recommended for use at larger 

Pe: instead, the space step should be reduced so that Pe < 5. 
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