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Intense bed load grains are transported over an erodible bed through a transport layer. The local 

concentration of grains varies considerably across the transport layer from zero at the top of the layer 

to values near the bed concentration at the bottom of the layer. Kinetic theory (KT) offers constitutive 

relations which relate local granular stresses with local concentration and velocity (gradient) in 

collision-dominated granular flows. Extended kinetic theory takes care of flows at high 

concentrations where clustering of grains dominates over binary collisions. 

The goal of the present work is to test the kinetic theory based approach by Larcher and Jenkins to 

modelling of a segregation process in intense bimodal bed load at conditions observed in our tilting-

flume experiments. For the bimodal flows, we observed a development of a sliding layer of finer 

grains at the top of the deposit as a result of the segregation process. We show that the development 

of such a layer is also a result of the kinetic-theory based model simulating segregation of two 

fractions which differ in grain size. 
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1. INTRODUCTION  
 

Particle segregation takes place in many industrial and natural processes in which transport 

of solid particles is involved. Sorting is associated with relative movement of particles of 

different fractions in the moving mass. The movement can be seen as flow caused by 

shearing of the mass. Segregation as a product of intergranular collisions has direct impact 

on a behavior of the granular flow. For instance, segregation is typical for dry gravity-

driven flow recognized as “the falling of snow and rock avalanches” on steep hillsides of 

mountains. A main force acting on transported particles, apart from the gravitational force, 

is the force generated by particle collisions. We can look at particle collisions from two 
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different perspectives. One perspective follows movement of each individual particle in 

flow. The other considers moving particles as a continuum with properties determined on 

a basis of average characteristics of the movement of the individual particles.  

Kinetic theory (KT) of granular flow is based on statistical methods developed for gases. 

KT-based analyses of solid-liquid flows governed by collisions of solid particles have been 

made by a number of authors, Armanini et al. (2005) or Berzi and Fraccarollo (2013) 

among others. Most of the analyses focused to collisions of mono-size grains. Works on 

collisional interactions among particles of different sizes have been scarce (e.g. Jenkins 

and Mancini 1989) and focused primarily to dry flows. Larcher and Jenkins (2013) 

proposed a segregation theory and developed a KT-based model for final segregation of 

binary mixtures. They extended it later to modelling of time development of the 

segregation in Larcher and Jenkins (2015) and validated the segregation model for dry 

granular flow.   

Not only segregation of grain fractions in dry flows is important, the particle segregation 

process in flowing water is of importance too, imagine e.g. intense transport of bed load 

during flash floods on mountain streams. In our previous work, we looked at principles of 

intense bed load of narrow graded fractions of sediment in the upper plane bed regime (e.g. 

Matoušek et al. 2015). Recently, we extended our investigation to intense transport of 

bimodal mixtures (Zrostlík et al. 2016). One of the observed interesting phenomena was a 

development of a sliding layer composed by finer fraction at the interface between the 

collisional layer and bed deposit in the bimodal flow (Fig. 1). In our 2016-paper, we 

analyzed the flow at steady state after particle segregation was finished (including the final 

development of the sliding layer). In this paper, we analyze and simulate a process of 

evolution of particle segregation in bimodal flow.  

 

 
 

Fig .1 Distribution of grains of sediment fractions in bimodal flow in upper plane bed regime 

(black – coarser grains, white – finer grains). Legend: white solid lines – boundaries of 

interfacial sliding layer, black dashed line – top of stationary deposit, white dashed line – top 

of collisional transport layer 
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2. TIME SEGREGATION  

We employ the segregation model presented by Larcher and Jenkins (2015). It is based on 

the extended kinetic theory and considers dry flow of two fractions (A,B) of spherical 

grains of not too different size (radius r) and density (mass m). The authors validated their 

model for quite steep flows of high concentration of transported particles. In the model, 

the evolution of segregation is expressed for spatial positions (x,y) and time of segregation 

(t) expressed using the dimensionless time (τ). The theory assumes uniform distribution of 

grains, i.e. a constant concentration c across the flow depth, so that the segregation affects 

only the distribution of individual fractions (the local concentrations of fraction cA and cB) 

and 
A Bc c c= +  = const. For the sake of segregation evaluation, the concentration is 

expressed as the number density nA, nB ( 34 / 3A A Ac n rp= ). The measure of segregation X is 

defined as ( ) / 2A BX n n nº - , where n = nA+nB. As for the steady segregation (Larcher and 

Jenkins 2013), the quantity of segregation X is transformed to a dimensionless parameter 

ζ through relation ( )ˆ ˆ
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average over the flow depth. The following KT-based parameters are dependent on 

segregation and distribution of collisions: Γ1, Γ2, R1, R2, G (Larcher and Jenkins 2013). For 

more details about the parameters used in the model, see Larcher and Jenkins (2015). In 

the segregation model, Equation 1 solves temporal evolution of vertical segregation at one 

location, 
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in which H is the flow depth, z is the dimensionless vertical position (the dimensional 

vertical position h above the flow bottom is normalized by H, z=h/H), Φ is the longitudinal 
slope of flow, e is the coefficient of restitution of colliding particles.  

Boundary conditions must be defined to solve the evolution using Eq. 1. Those are 

expressed for the vertical flux of particles computed by the term in the complex brackets 

in Eq. 1. The flux must be zero at the bottom of the flow because no particles are in motion 

at this boundary. The flux must be zero at the top of the flow as well because no particles 

are present. 

The initial condition is given by a known distribution of individual particles at the 

beginning of the segregation process. A ratio fraction volumes of A and B is determined 

at the initiation of the process and perfect mixing is assumed.  
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After solving the parabolic-elliptic partial differential equation (Eq. 1), we determine 

concentrations of both fractions from the quantity of segregation (X) in time and from the 

definition of segregation as 
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An example of one set of computational results is plotted in Figure 2. The results are 

obtained for flow conditions similar to those handled in Larcher and Jenkins (2015). For 

the modelled dry flow, we consider particles of the same density, flow inclination Φ = 25°, 
relation of radiuses rB/rA = 1.1 and coefficient of restitution e = 0.65. The chosen value of 

e is typical for glass beads colliding with an obtuse impact angle (Salman et al. 1991). The 

left plot, (a), shows the time evolution of the dimensionless segregation and the right plot, 

(b), shows the time evolution of concentration profiles of both fractions.  

 

 
 

Fig .2 a) Time evolution of dimensionless segregation in uniform concentration profile, b) Time 

evolution of concentration profile of both fractions due to sorting. Legend: dash dot - initial 

state (τ = 0), triangle - situation at τ = 500, circle τ = 1000, thick line τ = 2000 

 

The plots indicate how the process of segregation works. Due to collisional interaction 

among particles the two fractions tend to completely separate from each other and the finer 

fraction migrates down while the coarser fraction migrates up. At certain τ > 0 during the 

segregation process, the flow depth is divided into 3 zones:  

· in the upper zone the segregation process is completed, the zone contains only coarser 

particles and the distribution of grains is uniform;  

· the segregation process is going on in the central mixed zone, where both fractions 

exhibit steep concentration gradients; 

· in the lower zone the segregation process is completed, the zone contains only finer 

particles and the distribution of grains is uniform. 

a) b) 
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For the flow conditions as in Fig. 2, we tested sensitivity of model predictions for the time 

evolution and final state of segregation on the coefficient of restitution e, which is defined 

as the ratio of the post-collision- to pre-collision velocity difference of two colliding 

particles. Values of the coefficient may vary from 0 (inelastic collisions) to 1 (perfectly 

elastic collisions). Figure 3 shows the effect of a value of the coefficient of restitution on 

the dimensionless sorting at two time steps: τ = 250 and τ = 2000. The plots demonstrate 

that more elastic collisions accelerate the segregation and the highest value of e does allow 

the entire segregation of the fractions although the process is completed at τ = 2000.  
 

 
 

Fig .3 Sensitivity of dimensionless segregation on coefficient of restitution, a) situation at τ = 

250 (-), b) τ = 2000 (-) 

 

As a next step, we carry out the same simulation as for Fig. 2 but this time for plastic 

particles (we used plastic grains in our experiment described in Zrostlík et al. 2016), hence 

we choose e = 0.8 for the simulation. At the moment, our selected value of e is just a guess. 

The time evolution and the final distribution of particles are showed in Figure 4. A 

comparison of the simulation results in Figs. 2 and 4 again demonstrates that the 

segregation is faster for grains with more elastic collisions, i.e. our plastic grains instead 

of beads used in Larcher and Jenkins (2015).   

 
Fig .4 Time evolution of concentration profiles of both fractions for rB = 1.1rA and e = 0.8 

(typical for plastic grains), Legend: dash dot - initial state (τ = 0), triangle - situation at τ = 

500, circle τ = 1000, thick line τ = 2000 

 

a) b) 

a) b) 
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3. MODIFICATION OF SEGREGATION FOR LINEAR PROFILE 

A concentration profile in bed load transport is not uniform. Instead, it is linear across the 

collisional transport layer through which particles are transported in the upper plane bed 

regime (Matoušek et al. 2015). For modelling of the segregation process in bimodal bed 

load, we focus to the collisional transport layer in which the segregation takes place. We 

assume the zero concentration at the top of the collisional layer and the maximum local 

concentration of 0.586 (which corresponds with the theory by Larcher and Jenkins 2015) 

at the bottom of the layer.  

For a computation of the segregation model (Eqs. 1-2) it means that we must replace the 

originally assumed uniform profile of c(z) = 0.586 with the linear profile of c(z) = ( - ×c z c

). A height-variable local concentration makes also other c-related parameters of the 

segregation model variable with height within the collisional transport layer. 

Unfortunately, it appeared that his height variability made the model computationally quite 

unstable. For the sakes of model stability, we decided to apply the height variation only to 

the local concentration c and to the dimensionless segregation X (and hence ζ).   The other 

parameters of the segregation model (Γ1, Γ2, R1, R2, G) used a value of the flow-depth 

averaged concentration at the initial condition instead of c. 

Another mathematical complication was associated with values of local concentrations at 

the collisional layer boundaries, leading to dividing by zero in the model equations. To 

avoid this problem, computations were carried out only in the range of 0.1 to 0.9 of the 

dimensionless vertical position within the layer. The boundary conditions for the 

computation again defined that the granular fluxes were zero at the top and at the bottom 

of the collisional layer. The initial conditions were the constant ratio of volumes of both 

fractions expressed as / 0.5Ac c =  in the layer and perfect mixing of fractions at the 

initiation of the segregation process. 

 

 
 

Fig .5 Time evolution of originally linear concentration profiles of both fractions for rB = 1.1rA 

and a) e = 0.65, b) e = 0.80; dash dot - initial state (τ = 0), line with point- situation at τ = 100, 

line with circle τ = 250, thick solid τ = 2000 

  

Figure 5 shows the time evolution of shapes of concentration profiles of both fractions 

from a linear profile at the initiation of the segregation process to the final state after the 

segregation process was finished. The left plot (a) gives a solution for grains of the 

a) b) 

414



 

coefficient of restitution e = 0.65. The right plot (b) gives the same for e = 0.8. Both plots 

show a development of a layer composed of finer particles above the top of the deposit. 

This corresponds with the development of the sliding layer composed of finer particles and 

observed in our experiments with bimodal mixtures (Fig. 1). Note also that the segregation 

with e = 0.65 produces a sharper interface between the segregated layers of coarser grains 

and finer grains. 

In Figure 6, we demonstrate how long is the period of time over which segregation 

evolution takes place before it reaches the final equilibrium. The time evolution is 

demonstrated on a change of a vertical position within the collisional layer of the center of 

mass of an area occupied by concentration profiles of individual fractions. IN the 

segregation process the center of mass of coarser grains moves up and the center of finer 

grains moves down. The left plot is a solution for a uniform distribution of total 

concentration, while the right plot is a solution for a linear distribution of total 

concentration. The segregation process is faster and the new equilibrium is found earlier 

in flow with the linear concentration distribution than in flow with the uniform distribution. 

This is due to the fact that less particles are present in the upper part of the collisional layer 

than in the lower part if the profile is linear at initiation of the segregation process and 

therefore the process takes less time to finish.  

 

 
Fig .6 Time evolution of vertical position of center of mass of area occupied by concentration 

profile for two fractions and different values of coefficient of restitution for simulation using 

a) uniform concentration distribution, b) linear concentration distribution 

 

4. CONCLUSIONS 

We employed a kinetic-theory based model to study segregation of fractions in bimodal 

bed load transported through a collisional transport layer in the upper plane bed regime. 

We employed the Larcher-Jenkins segregation model proposed for highly concentrated dry 

flow with uniform distribution of spherical beads.  

Our interest is in collisional flows of plastic grains with linear concentration profiles. A 

variation of the coefficient of restitution in the model reveals that the simulated segregation 

process is faster for plastic grains with a higher value of the coefficient than for the glass 

beads used by Larcher and Jenkins.  

We modify the model for collisional bed load with a linear concentration profile. For given 

assumptions, the modified segregation model predicts a presence of a high concentrated 

a) b) 
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layer of finer grains at the interface between the deposit and the collisional transport layer. 

The presence of such a layer was detected in our earlier bimodal experiments in a 

laboratory tilting flume.  
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