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Many tailings slurries are comprised of fine particles suspended in a carrier fluid. For high enough 

concentrations, the fines and water combine to form a non-Newtonian slurry. In a number of 

important applications, these slurries also contain larger, denser particles that are able to settle under 

shear. This results in inhomogeneity in the flow and can potentially significantly increase the 

pressure gradient required to drive it. A key unanswered question is how the settling rate of large 

particles is related to the rheology of the fluid and the local shear in the particle vicinity. In this paper, 

a numerical investigation of large particle settling in un-sheared and sheared mining slurries is 

presented. For power-law rheology, the ratio of sheared to un-sheared particle settling rate increases 

with increasing imposed shear and with increasing shear thinning. We propose a criterion for 

estimating the settling velocity under shear that can be used to provide estimates of particle settling 

during transport and the likely distance before complete stratification in laminar flow. 
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1. INTRODUCTION 

In high concentration, fine particle suspensions, a knowledge of the terminal velocity 

of large dense particles in the usually non-Newtonian carrier is desirable.  Examples 

include transport of mine tailings, removal of swarf in oil and gas well drilling, concrete 

pumping and transport of food materials with inclusions.  These fluids exhibit non-

Newtonian behaviour and their rheology is often well-modelled using simplified rheology 

models.  Because the coarse particle density is usually greater than the density of the carrier 

media, the solids can potentially settle, resulting in an accumulation in pipelines or 
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machines.  Because the carrier rheology is shear dependent, settling velocity will depend 

on the flow state, thus an understanding of how shear affects settling is needed to predict 

settling rates, times and distances in pipelines or process equipment. 

Previous studies have reported settling velocity and drag coefficient for spherical 

particles settling in non-Newtonian fluids.  The experimental and numerical works of 

Graham and Jones (1994), Atapattu et al. (1995) and Dhole et al. (2006) provided a 

prediction of settling velocities in unsheared power law fluids.  They compare well with 

each other with a maximum deviation of around 11% for higher particle settling Reynolds 

number (O(100)).  With an imposed shear, Ovarlez et al. (2012), Gheissary and van den 

Brule (1996) and Talmon et al. (2014) considered different ways of imposing an additional 

shear to settling particles and all found that it aided the ability of particles to settle.  Little 

published research is available on large particle settling velocity predictions in fluids with 

the properties of mining slurries and to our knowledge no work has been done on predictions 

under plane sheared conditions. 

In this study, we present a computational model that allows simulation of coarse particle 

settling in sheared fluids. In practice the coarse particle fraction in a slurry is unlikely to 

be so dilute that particles can be considered in isolation.  However before finite volume 

fractions can be considered, the effect of shear on an isolated particle must be categorised 

and that is the aim of the present study.  We predict the settling velocity and drag coefficient 

of a one millimetre particle settling in power law fluids that are representative of mining 

slurries, and consider density differences between in the range 100–4000 kg m−3.  With 

this model, we are able to predict the settling behaviour at different applied shear rates, 

providing a basis for more complex situations. 

2. NUMERICAL METHOD 

2.1. GOVERNING EQUATIONS AND RHEOLOGY MODEL 

The equations of motion for an incompressible laminar flow of a power law fluid are: 

       (1) 

where ui is the component of the velocity in the xi−direction, ρ  is the fluid density, ƞ  is the 

effective viscosity, P is the pressure and τij is the stress tensor.  The rate of deformation 

tensor is Sij = ∇u + ∇uT . The power law rheology model is then written 

ƞ = k ä ̇
^−1                                              (2) 

where k is the consistency and n the flow index.  Choosing a density scale given by the 

fluid density, a length scale equal to the particle diameter d, a velocity scale given by the 

settling velocity V , and a viscosity scale given by the viscosity at a shear rate of V/d, the 

dimensionless form of the momentum equation leads to the particle settling Reynolds 

number, Re:                            Re =
ρd nV 2−n

k
              (3) 

The equations of motion (Eqn. 1) are solved using the finite-volume based solver 

simpleFoam, a branch of OpenFOAM 3.1.0. 
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2.2. COMPUTATIONAL DOMAIN 

We approximate the idealised problem of a particle settling in an infinite medium by using 

a single sphere at the centre of a cubic box with side length D.  To reduce computational 

complexity we perform the simulation in a frame of reference attached to the particle, thus 

the walls of the box move upwards with respect to the stationary particle.  Figure 1 shows 

a schematic representation of the computational set-up.  The left and right (x) walls of the 

box are defined as no-slip boundaries that move vertically (y − direction) with a speed 

equal to the settling velocity V − this will drive a flow around the sphere that is equivalent 

to the flow due to particle settling.  However V is the settling velocity we seek in the first 

place, hence an algorithm to find the correct velocity is required and is discussed below. 

 
Fig. 11    Schematic of the computational domain 

Periodic boundary conditions are used on the two other pairs of walls (top and bottom 

(y) and front and back (z)) of the box.  This approximation is equivalent to simulating an 

infinite 2D array of particles settling between two infinite moving plates and has the 

potential to introduce errors.  The effect of this approximation is also discussed below.  As 

described, the model is appropriate for investigating unsheared particle settling.  For an 

applied shear, the left and right x−walls of the domain are also moved in the opposite 

direction with velocity W in the z-direction in addition to V in y-direction.  Therefore, the 

boundary conditions for the left and right walls are (0 V -W) and (0 V W) respectively, 

giving an applied shear of 2W/D. 

Independence of the solution for both the grid resolution and computational domain 

size was considered.  To study the effect of resolution, a fixed box size (10D big) was used 

and key geometric parameters were modified: the number of sphere surface elements (Ns), 

the thickness of the first shell of elements on the sphere surface (Ns) and the expansion 

factor for the element thickness moving away from the surface (1 + e).  Predictions of the 

drag coefficient CD were compared to determine when the results converged.  Values of 

Ns ≥ 10000, δs = one tenth of the length scale of the surface mesh and e = 0.3 were 

subsequently used in the simulations.  Predictions of the drag coefficient CD for different 

box sizes (at the converged resolution mentioned above) were also compared.  From this 

it was determined that the ratio of domain size (D) to particle size (d) needed to be ≥ 15 to 

provide converged results.  This result is in agreement with the results presented in 
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Atapattu et al. (1995) for yield stress fluids.  Approximately 300K grid cells were used in 

the simulations. 

 

2.3. DETERMINING SETTLING VELOCITY AND ROTATION RATE 

For steady settling, there is zero net force on the particle and the drag experienced by 

the particle will be balanced by (π/6)Δρ d3g.  For a given particle size, density difference 

and fluid rheology, a unique velocity, V, must be found for which the net force is zero.  

This velocity cannot be directly estimated and is found here using the secant root finding 

method with an initial guess for V provided by the Stokes settling velocity in an equivalent 

Newtonian fluid.  For the case of an imposed shear, the particle will also rotate about the 

y − axis.  For a Newtonian fluid in the Stokes regime this rotation rate is given by half the 

imposed shear, i.e. ω = W/D.  For power-law fluids and/or non-zero Reynolds number, this 

rotation is unknown.  In the simulation, a rotational velocity about the y−axis ω must be 

applied as boundary condition on the sphere so that the net torque on the sphere is zero.  

The rotational velocity that provides zero net torque is again found by using the secant root 

finding method with an initial guesses of w = W/D. 

The rheology parameter space considered in this study was based on the power law 

rheological data for a range of mining slurries obtained from Sofra and Boger (2002); 

Turian et al. (2002); Bakker et al. (2009).  The range of consistency (Pa sn) is 0.1 < k < 2 

and for flow index is 0.3 < n < 0.7. 

3. PARTICLE SETTLING PREDICTIONS 

Settling of a one millimetre particle with particle-liquid density differences in the range 

100–4000 kg/m3 was considered in this study.  We present the results in two parts.  In the 

first, we consider settling without imposed shear and compare our results to the 

experimental results of Graham and Jones (1994).  In the second part, we consider how 

imposed planar shear modifies the settling velocity and drag coefficient. 

 

3.1. PARTICLE SETTLING IN AN UNSHEARED POWER-LAW FLUID 

For the parameters considered here, the particle settling Reynolds numbers ranged from 

10−6 ≤ Re ≤ 225. An example of a typical flow field is shown in Figure 2a and 2c.  Figure 

2a shows the variation of the y − component of velocity.  Its magnitude is zero around the 

sphere’s surface (due to the no-slip boundary condition), and its distribution increases 

uniformly slowly away from the sphere.  As can be seen in Figure 2c, the viscosity is 

unsurprisingly lowest around the sphere surface (except at the rear stagnation point) and 

the high-viscosity exterior fluid pinches in at the equator, indicating low shear at the 

particle sides.  The comparison to sheared particle settling in Figure 2b and 2d will be 

discussed in the next section.  

As expected, particle settling velocity increases for increasing density difference as 

shown in Figure 3a. Unsurprisingly, the effect of fluid consistency k on VU is  

approximately linear over the range of Re (10−6 to 200) covered in this study, with higher 

consistency resulting in lower velocity.  The effect of flow index is to increase settling 

velocity as n decreases. 
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Fig. 2    Contours of (a) unsheared velocity y component (b) sheared velocity y component 

(δ=10) (c) unsheared viscosity distribution (d) sheared viscosity distribution (δ = 10) (for 

k =  2Pa sn, n = 0.5 and Δρ = 4000) 

Graham and Jones (1994), Atapattu et al. (1995) and Dhole et al. (2006) all presented 

relationships between CD and Re for power law fluids at a finite Re.  The results presented 

in Figure 3a were appropriately non-dimensionalised and plotted in Figure 3b to compare.  

The results here show good agreement with the previously published correlations.  This 

agreement provides clear evidence of the reliability of the computational model, and 

confidence that subsequent results for settling under imposed shear will be similarly 

reliable. 

 

 
 

Fig. 3. (a) Settling velocity as a function of density difference (b)Variation of drag coefficient 

with Re for 0.3 < n <  0.7. Comparison to Graham and Jones (1994). 
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3.2. PARTICLE SETTLING UNDER IMPOSED SHEAR 

With an imposed shear, the local shear rate in the entire flow, including the particle 

vicinity, is affected. Since viscosity is power law function of shear rate , increasing shear 

rate causes viscosity to decrease around the particle. It seems likely that this will result in 

a faster settling velocity as a result of decreased effective viscosity. The imposed shear 

from the moving walls here is set as a multiple of the shear rate scale determined from 

unsheared settling. Thus we define ( as the ratio of the shearing plane shear rate and the 

unsheared settling shear rate which is given by Eqn. 4: 

δ =
2W D

V
U

d

     (4) 

where W is the shearing plane velocity, D is the domain size, d is the particle size and VU 

is the unsheared settling velocity.  

Results for a one millimetre particle settling in sheared power law fluids with n = 0.3 

and 0.7 for 100 < Δd < 4000 and 0.1 < ( < 10 are shown in Figure 4.  As can be seen, for 

a given rheology, as the imposed shear rate ratio ( increases, the particle settling velocity 

also increases.  As expected, the impact of imposed shear is to decrease the viscosity across 

the entire computational domain, but the local effect in the vicinity of the particle enables 

the particle to settle faster.  With this in mind, we proceed to quantify the change in settling 

velocity as a function of the rheology and (.  For one rheology, a comparison between the 

sheared flow field (( = 10) and unsheared flow field is shown in Figure 2.  Clearly seen is 

a significant increase in velocity and decrease in viscosity compared to that in the 

unsheared case. 

 
Fig. 4.   Settling velocity as a function of Δρ for different δ. 
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3.3. RATIO OF SHEARED TO UNSHEARED SETTLING VELOCITY 

We present the results of sheared settling in terms of the ratio of velocity in the case of 

imposed shear to that in the unsheared case. Results of VSh/VU for a given value of k (2.0 

Pa sn) are shown in Figure 5a as a function of imposed shear rate ratio (.  Important to note 

is that each of the curves in Figure 5a is indistinguishable for every density ratio 

considered, i.e. the results in Figure 4 for a fixed n collapse for all Δd.  This then means 

that the results appears to be independent of Re, at least over the range of Re of the 

simulations(10−6 to 200).  The second obvious result is that just like the results in Figure 4 

for VSh the ratio VSh/VU  increases with decreasing n – more shear thinning results in faster 

relative settling in a sheared fluid.  Although not obvious from Figure 5a, our results also 

predict that the settling velocity of a Newtonian fluid is affected by applied shear, although 

this is quite a weak effect being VSh/VU = (1 + 0.003 ().  

The effect of consistency k (0.1 or 2) on the ratio VSh/VU is shown in Figure 5b for a 

single flow index n = 0.5.  Again these results cover the full range of density differences.  

Clearly seen is that k has no direct influence on the ratio of sheared to unsheared settling 

velocity which is a consequence of the viscosity being a linear function of k.  It suggests 

again the  ratio VSh/VU is not a strong function of Re.  

 

 
Fig. 12  VSh/VU as a function of ( for (a) flow index 0.3 < n < 1.0 at constant k = 2.0 and (b) for 

k=0.1 and 2 Pasn at constant n = 0.5 

From the results for imposed shear, we observe that the velocity ratio is primarily a 

function of imposed shear and flow index. Based on this understanding we collapse the 

data to determine the following unified correlation: 

V
Sh

V
U

= 1+0.003δ( ) 1+1.56δ( )
1−n                                (5) 

Equation 5 incorporates the effect of shear due to both settling and the imposed shear 

through ( and was obtained using non-linear least square regression analysis. The first 

term arises from a need to recover the Newtonian result as n approaches unity. The 
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functional form of the second term is based on the ratio of viscosity scale ƞSh in the case of 

imposed shear to that in the unsheared case ƞU (see Equation 6 for the definition of these 

scales).   
n 1

2 2 n 1
Sh U U

Sh U

V V V
k k

d d d

-
-æ ödæ ö æ ö æ öç ÷h = + h =ç ÷ ç ÷ ç ÷ç ÷è ø è ø è ø

è ø

          (6) 

 

This ratio of viscosity scales can be shown to take the form (1 + a ()1-n and is thus used to 

determine the correlation. 

4. CONCLUSIONS 

In the present study, particle settling in unsheared and sheared power-law fluids has 

been investigated. Numerical predictions for unsheared settling were found to be in good 

agreement with past studies. A detailed examination of computational results showed how 

shear rate increases and viscosity decreases close to the particle surface. These predictions 

are useful not only in estimating the settling velocity but also provide useful insights on 

details of the flow. In the case of an imposed shear, we show that the particle settling 

velocity increases with increasing shear rate as expected and we propose a criterion for 

estimating the settling velocity under plane shear (Equation 5). This result has implications 

for settling time and importantly the settling distance required for a homogeneous coarse 

particle suspension to become stratified. This study will be further extended to consider at 

the effect of shear rates for various particle size, shear thinning and yield stress fluids. 
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