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A famous quote of Landau and Lifschitz reads:  “Yet not every solution of the equations of motion, 
even if it is exact, can actually occur in nature. The flows that occur in nature must not only obey the 

equations of fluid dynamics, but must also be stable”. In this paper we examine the global stability 

of concentration profiles of fine sediment in uniform channel flow. We integrate the fully transient 

equations with a conservative numerical scheme to obtain the asymptotic states for a wide range of 

initial conditions. It is found that the steady state solutions are stable and are therefore likely to 

develop under experimental conditions. The decay rate of the disturbances is in line with the 

hydraulic time scale defined by the ratio of the channel height and the friction length. In combination 

with the averaged flow velocity it is possible to assess the adaptation length of the concentration 

profile along the channel slope. This information is important for the interpretation of measured 

concentration profiles that are assumed to represent a steady-state solution for benchmark purposes. 

In addition the role of the added mass force on the stability is studied. The role of this force seems 

limited for the experimental conditions studied in this paper. 

KEY WORDS:  sediment, turbulence, channel flow, stability, Rouse profile, hindered-settling, 

adaptation length 

1. INTRODUCTION 

Uniform sediment laden channel flow is an elementary validation case for sediment 

modelling techniques in hydraulic transport ranging from purely empirical approaches to 

advanced computational fluid dynamics models such as Kaushal et al (2012) and  Goeree 

et al  (2016). For this reason it is very important to have a fundamental understanding of 

this problem. The first reference goes back to Schmidt (1925) who derived an advection-

diffusion equation for sediment in uniform channel flow. Rouse (1937) solved this 

equation analytically with appropriate closure of the turbulent diffusivity. Halbronn (1949) 

153



 

and Hunt (1954) improved the original equations of Schmidt (1925) by considering volume 

conservation of both phases. This correction is very important for high sediment 

concentrations. Van Rijn (1984) and  Winterwerp et al (1990) incorporated the hindered-

settling velocity of particles to the Hunt (1954) and  Schmidt (1925) formulation 

respectively. Greimann and Holly Jr (2001) showed that it is possible to retrieve the Rouse 

(1937) profile form the two phase formulation derived in Greimann et al (1999).  Keetels 

et al (2017) compared the advection-diffusion approach of Schmidt (1925), Rouse (1937), 

Van Rijn (1984) and Winterwerp et al (1990) with the two-phase model of Greimann et al 

(1999) and several formulations of the drag force in turbulent flow.  They demonstrated 

that the Halbronn (1949) and Hunt (1954) corrections are not consistent with momentum 

conservation. The  hindered-settling correction of Winterwerp et al (1990) can indeed be 

retrieved if it is assumed that the friction factor of particles in uniform channel flow is the 

same as the friction factor under terminal settling conditions.  Concentration profiles 

obtained with the correction of Winterwerp et al (1990) were also compared with profiles 

obtained with an appropriate estimate for particle friction factor in turbulent channel flow. 

The numerical differences between both approaches are smaller than five percent. Keetels 

et al (2017) also found that the steady state concentration profiles could be obtained  by 

integration of transient equations for the vertical sediment velocity for a wide range of 

initial conditions. This demonstrates that these profiles are stable and are therefore likely 

to develop under experimental conditions following the famous quote of Landau and 

Lifschitz:  “Yet not every solution of the equations of motion, even if it is exact, can 
actually occur in nature. The flows that occur in nature must not only obey the equations 

of fluid dynamics, but must also be stable”. This paper focus in more detail on the stability 
of these solutions by providing a modal analysis, study of the decay rate of the 

perturbations and extend the analysis by assuming different boundary conditions and 

involving the added mass forces in the transient equations.  

2. PROBLEM DEFINITION 

Figure 1 provides a more precise definition sketch of sediment in uniform channel flow. It 

is assumed that horizontal velocity of the solid Us   and fluid Uf  depend on the vertical 

location but are constant in time and do not vary with the horizontal location. The channel 

height is also constant. The vertical velocity of the fluid iV  and solid i[   and the 

concentration Φs vary in time and in the vertical location. It is assumed that the initial 

concentration is perturb and the final concentration distribution is unknown. The question 

is whether a steady concentration distribution can develop under these condition for all 

possible initial profiles.   
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Fig.1 Definition sketch. 

 

3. TWO-PHASE MODEL 

Keetels et al (2017) casted the original two-phase formulation of Greimann et al (1999) in 

a convenient form to obtain transient solutions. The main novelty is that the transient 

pressure gradient is eliminated from the system of equations, while the solid concentration 

and velocity difference between both phases remain as unknowns. Here follows a brief 

description of the derivation of these equations and a few notes on the closures involved. 

From the mass balance it follows that: 

 

 

 ¾Φ[¾` + ¾Φ[V[¾p = 0 
 

(1) 

 

By combining the momentum balances of each phase as derived by Greimann et al (1999) 

equipped with appropriate closures for the coupling forces with the mass balance Eq. (1) 

it is possible to derive an evolution equation for the velocity difference Vl  = Vf  − Vs 
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 Á1 + dVW$ÂΦ[dV + ΦVd[ÃΦVÄ ¾ik¾`
= d[ − dVΦ[dV + ΦVd[ |e|
− 1ÂΦ[dV + ΦVd[ÃΦVΦ[ ÁΦ[d[�; (ik + ij) + dVW$ikΦV ¾Φ[¾`
+ dVW$ ¾Φ[Vj¾` Ä 

 

 

 

 

(2) 

 

where d[ and dV represents the density of the solid and fluid phase and W$ is the added 

mass coefficient,  �; is the relaxation time of a solid particle and Vd  is the drift velocity.   
The drift velocity represents the correlation between local regions of high/low vertical fluid 

velocity fluctuations and the presence/absence of solid particles (Greimann et al, 1999).  

This term can be modelled as a diffusive flux in homogenous turbulence, yielding 

 

 ij = −Æ³³ 1Φ[ΦV
¾Φ[¾p = −Æ³³ Á 1Φ[ + 1ΦVÄ ¾Φ[¾p  

 

 

(3) 

Eq. (1) and Eq. (2) can be solved in conjunction with appropriate closures for the diffusivity 

and approximation of the particle relaxation time. The turbulent diffusivity is estimated as 

 

 Æ³³ = �∗Èp(1 − p/ℎ) (4) 

 

where  κ represents the Von Kármán constant and �∗ is the friction velocity. The particle 

relaxation time is defined as, 

 

 �; = d[m;)ΦVÊ18ËVdVWV 

 

 

(5) 

where m; is the particle diameter, β is a parameter to correct the particle friction factor WV 

for concentration. If it is assumed that the friction factor of a particle in channel flow is the 

same as the friction factor during terminal settling conditions it holds that 

 

 �; = V;Ìd[ΦV́ 3)
e(d[ − dV) 

 

(6) 

 

where i;Ì  is the terminal settling velocity of a single particle in stagnant water and n 

denotes the hindered-settling exponent of Richardson and Zaki (1954). It should be noted 

that Eq. (2) is only valid for �; that is smaller than the diffusive time-scale Æ³³/Í[Î)ÏÏÏÏ.  This 

corresponds with experiments with relatively fine sediment at some distance from the wall. 
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In Keetels et al (2017) it is shown that if Eq. (6) is valid, the steady state solution of system  

Eq. (1) and Eq. (2) can be expressed as 

 

 i;ÌΦV́ Φ[ + Æ³³ mΦ[mp = 0,  

(7) 

 

which implies that under that assumption the sediment balance consist of a hindered-

settling flux and a diffusive flux in the same spirit as the original Schmidt (1925) / Rouse 

(1937) model for the dilute case.  

4. NUMERICAL METHOD 

Eq. (1) and Eq. (2) are intrinsically coupled and are strongly non-linear. An approximate 

analytical solution could be obtained by linearization of the solution around the steady state 

solution. In this way only small perturbations can be studied. Moreover, the boundary 

conditions at the wall and top of the channel are not periodic. Therefore, the perturb 

solution cannot be decomposed by standard Fourier series expansion. Other base function 

can be used, like the Chebyshev expansion but this makes interpretation of the results more 

complicated. A conservative numerical integration of Eq. (1) and (2) is more convenient 

to study the evolution of the concentration and vertical velocity profiles for all type of 

boundary conditions and large initial perturbations.  The vertical direction is divided in a 

finite number of control cells. The cell centres contain the cell-averaged concentrations 

and the cell faces contain the vertical solid velocity.  Integration of Eq. (1) yields an 

expression for the cell averaged concentration as a function of the solid flux at the faces of 

each cell. Eq . (2) gives the solid flux at the cell faces, with central interpolation for the 

concentrations and central differencing for the concentration gradients. For the faces at the 

upper and lower wall the no-flux boundary condition is imposed in a natural way. This 

yields a consistent and mass conserving integration scheme that is first order accurate in 

time and second order accurate in vertical grid spacing. As it is a one dimensional problem 

computational time restrictions are absent allowing full grid and time step convergence. 

5. TRANSIENT CONCENTRATION PROFILES 

Figure 2 shows both the steady state solution of Eq. (7) and transients solutions of the 

system of equations Eqs. (1) and (2)  for an uniform initial profile. It concerns the 

experimental conditions S16 of Einstein and Chien (1955), with ℎ = 11.9 (cm), ÐÑ = 2.00 

(m/s) Ð∗ = 12.5 (cm/s), = 0.182 , m; = 274 (μm), i;Ì = 3.8  (cm/s), d[ = 2650 (kg/m3). 

It is observed that the transient solution converges gradually to the steady state solution of 

Eq (1) and Eq (2). This is an important observation as in many experiments an 

approximately uniform profile (fully mixed) is employed at the inlet of the channel and it 

is assumed that the profile gradually develops along the channel slope. Figure 2 supports 

this assumption provided that the horizontal fluid and solid velocities are unaffected by the 

vertical sediment distribution.  
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Fig.2 Steady state concentration profile obtained with two standard integration methods and 

transient solutions of Eq. (1) and Eq. (2) given at `�∗/ℎ = 0, 0.1, 0.2, 0.5, 1, 2, 10.    

 

 
Fig.3 Steady state concentration profile obtained with two standard integration methods and 

transient solutions of Eq. (1) and Eq. (2) given at `�∗/ℎ = 0, 0.025, 0.1,5. 

 

Figure 3 shows the transient solution for a perturbation around the steady state profile. 

The perturbation is generated as a modulated sinusoidal shape with wave number k=5 

and is chosen such that the averaged concentration is the same as the steady state 

solution. Again it is observed that the transient solutions converge to steady state. This 

demonstrates that the steady state concentrations profiles of system of Eqs. (1) and (2)  

are stable and can be expected under experimental conditions.  
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6. MODAL DECAY ANALYSIS 

Now it is interesting to study the decay rate for several modal initial disturbance. Figure 4 

shows the decay rate of L2 or energy norm of different modes with different wavenumbers 

k. The time axis is scaled with the hydraulic time unit ℎ/�∗.  It shows that the decay rate 

increases with the wave number. The energy in the lowest order disturbance is strongly 

reduced within one hydraulic time unit. The added mass terms in Eq. (2)  have a small 

contribution to the decay rate of each mode.   

 
Fig 4 Decay rate of variance for different wave number of the initial disturbance. 

 

It is also interesting to evaluate the decay rate in terms of horizontal displacement of the 

fluid along the channel slope. One hydraulic time unit times the average velocity (ÐÑℎ/�∗) 

represents a length scale. From Figure 4 it can be deduced that disturbances at all length 

scales will be dissipated within a few hydraulic time or length units. For experiment S16 

of Einstein and Chien (1955) it holds that the channel length ~6ÐÑℎ/�∗ , which suggests 

that their measured concentration profiles can be regarded as steady state/ fully developed. 

This observation is also consistent with the transient profiles shown in Figure 3.  

7. CONCLUSION 

From this analysis of transient profiles of concentration and vertical solid velocity it has 

been established that a steady state profile will develop independent of the initial sediment 

distribution. High wave number disturbances decay faster than low wave number 

disturbances. The decay rate of the lowest wave number is still in line with the hydraulic 

time unit.  Comparison of the channel length and the adaptation length of the profile based 

on the friction velocity, average velocity and channel height, suggests that the fine 

sediment profiles provided by Einstein and Chien (1955) can be regarded as equilibrium 

profiles, which makes them very useful for benchmark purposes. This analysis is, however, 

restricted to the vertical momentum balances of both phases and assumes that the 

horizontal velocities and turbulence properties are frozen. In reality the directions are 
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coupled and more complicated interactions due to vertical transport of horizontal 

momentum and density stratification might exist. For coarser sediment types collisional 

stresses and inertial transport terms in the momentum balance become important as well. 

These topics will be subject for further investigation.   
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