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A vast range of processes involve hydraulic transport of particles, ranging from biological flows, 

environmental and hydraulic transport of raw materials from the seabed. Raw materials, found in the 

deep sea, are mined and transported from the deep sea to the surface. Typically this is done using a 

vertical hydraulic transport system or VTS. One of the challenges is to assure the flow, i.e. prevent 

possible clogging of the system. The particle sizes range from 1/10 to 1/3 of the VTS pipe diameter. 

The objective of this paper is to numerically simulate the settling of one particle at moderate particle 

Reynolds numbers (i.e. IJ; ≈ 100, 200). Experimental data are used for validation. The equations 

of motion of a fluid flow are governed by the Navier-Stokes equations. These are discretized with 

the Finite Volume Method on a collocated grid and numerically solved using the fractional step 

method. Solids or particles are modeled using the Immersed Boundary Method (IBM).  

In this paper a free settling particle in a confined domain, in two dimensions, is simulated. The 

particle size with respect to the domain size is varied in the calculation. The settling velocity is lower 

in comparison with a free settling particle in an infinite domain. This is due to the so-called wall 

effect. The settling velocity from the numerical calculation is compared with the corrected settling 

velocity known from experimental data. The computational and experimental results are qualitatively 

in agreement. 
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1.  INTRODUCTION 

In recent years deep sea mining attracted a considerable amount of attention. The presence 

of valuable raw materials in the deep sea is interesting, securing the supply of these 

materials in the long term. These materials can be found, typically at depths of 2000-5000 

meters, in the form of manganese nodules, massive sulfides and cobalt rich crusts. The 

deposits contain several metallic materials such as manganese, iron, copper, nickel and 

cobalt. Furthermore, massive deposits also contain elements such as germanium, selenium, 

tellurium and indium, which are in high demand in many industries. These raw materials 

are transported hydraulically from the deep sea using a VTS. The flow assurance and 

stability of vertical hydraulic transport of particles was investigated experimentally by van 
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Wijk (2016).  

In this work the Immersed Boundary Method is employed, introduced by Peskin (1972), 

describing a particle settling under gravity, with a diameter ranging from 1/10 to 1/3 with 

respect to the pipe diameter. The need for grid generation, which is numerically 

cumbersome in combination with moving bodies, is removed. This makes this method 

suitable in complex flows (as described above). The use of IBM is an active research field 

and gained considerable attention in the last decades, see for instance Peskin (2002), 

Fadlun et al. (2000), Ghosh and Stockie (2013) or Wang et al. (2017).  

2. IMMERSED BOUNDARY METHOD 

2.1. EQUATIONS OF MOTION 

The motion of a fluid is described with the Navier-Stokes equations and is given by:  

 

(1) 

where u, ρ, μ, and p are the velocity, density, molecular viscosity and the hydrodynamic 

pressure, respectively. The source term, s, in Equation (1) is a body force, e.g. a buoyancy 

force due to density differences of a fluid. The incompressibility constraint, or conservation 

of mass, is expressed as:  

 

(2) 

The body force, s, see Equation (1), consists of two forces:  

 (3) 

where fg is the force due to the gravity acting on an immersed solid:  

 (4) 

here ρs is the density of the solid particle. The density difference causes the solid to settle 

under gravity. In Equation (3) the variable, fIB , is the immersed body force. The immersed 

body force is imposed in Equation (1) in such a way that a desired or imposed velocity, 

denoted as V, is recovered. The numerical treatment of the immersed body force and the 

imposed velocity, V, will be discussed in more detail in section Section 3.  

2.2. SOLIDS 

The Immersed Boundary Method (IBM) was introduced by Peskin (1972) describing the 

interaction between a fluid and a solid, in this case valves in a human heart. A more 

elaborate discussion of the method is given by Fadlun et al. (2000) or Peskin (2002). Here 

this method is used modeling a solid particle, with a particular shape, settling in a fluid. A 

mask function, discussed in more detail in Section 3.2, is used denoting the solid region, 

see Figure 1. In this region the solid density, ρs , differs from the density of the surrounding 

fluid, ρf . Moreover, by setting the viscosity to a high value, in the solid region, the body 

is made non-deformable. 
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Figure 1: Schematic drawing of the Immersed Boundary Method. 

2.3. WALL EFFECT

The terminal settling velocity, of a particle settling in a confined space, is lower, than the 

terminal settling velocity of a particle settling in an infinite domain. The reduced settling 

velocity is influenced by the presence of a wall and this phenomenon is called the wall 

effect. In the following the wall effect formulation, proposed by di Felice (1996) is briefly 

discussed. The wall effect can be quantified by defining a wall factor, f, as the velocity 

ratio: 

 

(5) 

where V is the falling velocity of a sphere settling in a tube, of a certain dimension, filled 

with a liquid. The terminal settling velocity, of the same sphere, in an unbounded domain 

is denoted by V∞. The wall factor, f, is a function of the ratio of the particle size and the 

domain size, the diameter of the tube and the particle Reynolds number, Rep, at terminal 

settling velocity V∞, with Rep = ρfV∞dp M μ. The following correlation, for the wall factor 

f Equation (5), based on experimental data reported by Fidleris and Whitmore (1961), has 

been introduced by di Felice (1996):  

 

(6) 

where the particle tube diameter ratio is λ = dp/D . In Equation (6), α depends on Rep at 

terminal settling velocity V∞, see di Felice (1996), in the following manner:  

 

(7) 

The relations, Equation (6) and Equation (7), are valid for the intermediate flow regime, 

i.e. Rep≤200. The reduction of the terminal settling velocity due to the wall effect, 

introduced here, is used as comparison with computational results from the numerical 

model. 

3 NUMERICAL MODELING 

3.1 FRACTIONAL STEP METHOD 

The Navier-Stokes equations, see Equation (1), are discretized using the Finite Volume 

Method, (FVM), Versteeg and Malalasekera (1995), Ferziger and Peric (1999). The motion 

of the flow is solved using the fractional step method, Chorin (1968). The high diffusion 

coefficient, μ , in the solid region, leads to numerical instabilities. A method circumventing 
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numerical instabilities is to use an implicit fractional step method. Moreover, an extra body 

force is added, accounting for the influence of the immersed solid. The (implicit) fractional 

step algorithm is described in the following, given in semi-discretized from:  

 
(8) 

Where Δt is the time step size, A(un) the advective term, D(u*) the viscous contribution 

and u* is a first predictor of the velocity. Equation (8) needs to be solved implicitly with a 

matrix solver. In this work the BiCGStab algorithm, see Press et al. (1992), is chosen and 

is readily available in the C++ Eigen package, see Guennebaud et al. (2010). Note, that the 

gradient of the pressure is omitted in Equation (8). The pressure can be recovered with help 

of the continuity constraint and, Equation (2) and the predictor step, Equation (8). This 

results in the so-called pressure Poisson equation:  

 

(9) 

The pressure Poisson equation is solved using a multi grid solver, see Briggs et al. (2000) 

and Press et al. (1992). Finally the velocity, at the next time level, is obtained with the 

newly found pressure and the predictor velocity, Equation (9) and Equation (8):  

 (10) 

The immersed boundary force, fIB , is yet to be determined. The IBM body force, to get 

the desired velocity, Vn#1, is given by: 

 

 

                             (11) 

3.2. MOTION OF IMMERSED SOLID 

The motion of the immersed solid is governed by the density difference between the solids 

density and the surrounding fluid. The immersed solid is marked using a mask function, 

wherein the density and viscosity differ from the surrounding fluid. In the masked region 

the viscosity is set to a high value in order to make a non-deformable body. At each time 

step the solid region is transported using an advection equation, which is formulated as 

follows:  

 
(12) 

where ϕ is the transported mask function at which the solids region moves. Here ϕ is of 

binary form, with:  

 

(13) 

The transported quantity, ϕ, needs to be positive at all times, i.e. the numerical solution 

needs to be bounded. This is achieved by employing the van Leer flux limiter, Van Leer 

(1974). Moreover, the numerical solution of the transport equation, Equation (12), suffers 

from numerical diffusion (as every numerical solution does). Therefore, at the each time 

step the particle shape is re-initialized. The re-initialization is done as follows. At each 

time step the center of gravity, (COG), and the (volume) averaged velocity, Vn#1, of the 

masked region is determined. The position of the COG is advanced in time, using a simple 
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forward Euler step, with the average velocity of the COG. At the new location of the COG 

the particle shape is re-initialized with a new mask region. It should be noted that rotation 

of the particle is neglected.  

3.3. TERMINAL SETTLING VELOCITY 

The terminal settling velocity of a particle in a quiescent fluid in an infinite domain is 

described with Newton’s second law. In steady state i.e. at terminal settling velocity, three 
forces govern the motion of a particle. The forces are the buoyancy, gravity and drag force. 

The buoyancy and gravity force can be formulated with the following single expression:  

 
(14) 

where Fg is the difference between the gravity, the diameter of the particle is D and the 

variables ρs and ρf are the solids and fluid density respectively. Finally the variable gz 

denotes the gravitational constant in, using a Cartesian coordinate system, z -direction. The 

drag force is formulated as follows:  

 
(15) 

where V∞ is the terminal velocity of a particle and Cd the drag coefficient. Combining 

Equation (14) and Equation (15) the terminal velocity yields:  

 

(16) 

it should be noted that the drag coefficient governs the settling velocity. Since in this work 

a 2D numerical calculation is shown, Equation (14) and Equation (15) needs to be adjusted 

accordingly. Basically in a 2D geometry cylinders are settling instead of spherical particle. 

This can be achieved by considering the a cylinder with a diameter dc with a length l and 

take the length l → ∞. Equation (14) can be rewritten into the following form, see Ghosh 

and Stockie (2013):  

 
(17) 

and the drag force becomes:  

 
(18) 

Wherein the Fd and Fg denote drag and gravity force, in a 2D geometry, respectively. By 

using Equation (17) and Equation (18) the terminal settling velocity of a cylinder can be 

obtained:  

 

(19) 

Now the terminal settling velocity, which depends on the drag coefficient Cd, can be 

calculated. In turn the drag coefficient is a function of the particle Reynolds number, Rep 

.  
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4. RESULTS 

4.1. NUMERICAL SETUP 

Two cases are considered here, in which the ratio of the particle diameter, dp and the 

channel width, D, is varied. These ratios are respectively, dp/D ≈ 1/10 and dp/D ≈ 1/3. 

In the calculations the particle size, dp , was kept constant and the width, D, of the channel 

was varied. At the walls no slip boundary conditions were imposed. The Cd value, in order 

to determine the terminal settling velocity, Equation (19), originates from Rajani et al. 

(2009) and Zdravkovich (1997) and is approximately Cd ≈ 1.33 at a Rep ≈ 200. It should 

be noted that the densities of manganese nodules are in the range of 2000-2500 [kg/m3], 

this deviates from the values chosen in the numerical benchmark. 
Table 1 

Physical properties, these are used as input in the calculation. 

 
Table 1 and Table 2 show the physical properties and numerical parameters used in the calculation. 

Figure 2 shows the particle trajectory, subplot (a) , and the particle velocity, subplot (b) .  

 
Fig 2. Particle trajectory, see (a) and particle velocity (b) shown here for ratio of dp/D ≈ 1/10,1/3 

. 

Table 2  

Numerical parameters used in the calculation. 

 

4.2. COMPARISON WITH WALL CORRECTED VELOCITIES 

Here the wall corrected velocities are compared here with the results of the calculations. 

The comparison is made using  Equation (6) and Equation (7) and experimental data. 

Figure 3 shows the results from the two calculations, dp D⁄ ≈ 1/3, 1/10, with the 

experimental data and the wall corrected fit function. The horizontal axis is the ratio 
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between the particle diameter and the channel width, dp/D . The vertical axis is the settling 

velocity scaled with the terminal settling velocity of a particle in an infinite domain, V/V∞. 

It is assumed that the wall effect, Equation (6) and Equation (7), determined in a 3D 

geometry, i.e. a spherical particle settling in a tube, holds for a 2D geometry. The 

computational results, the two simulated cases, do not fully agree with the experimental 

data from Fidleris and Whitmore (1961) and the wall corrected fit function introduced by 

Felice (1996), Equation (6) and Equation (7). However, settling velocity for the dp D⁄ ≈1/3 case is lower than the settling velocity of the dp D⁄ ≈ 1/10 case. Moreover, it can be 

seen in Figure (3) that for the dp D⁄ ≈ 1/10 case, the terminal settling velocity of the 

particle converges to the terminal settling velocity of a single particle, in stagnant fluid, in 

an infinite domain. 

 
Fig. 3 Wall corrected settling velocity, experimental data, fit function and results from 2D 

calculation.  

5. SUMMARY AND CONCLUSIONS 

In this paper a numerical method is presented describing a single particle settling under 

gravity using the Immersed Boundary Method. The Navier-Stokes equations are solved 

using the fractional step method. The particle shape is marked using a masked function 

and transported with an advection equation. At every time step the particle shape is 

reinitialized around the center of gravity of the mask function.  

From experiments it is known that the settling velocity is less for a particle in a confined 

space with respect to a particle settling in an infinite domain. This is known as the so-called 

wall effect. Here two 2D calculations, a particle settling under gravity in a confined space, 

have been performed as a validation of the numerical method.  

The computational results have been compared with experimental data and empirical 

relations The two simulated cases, with a particle domain ratio of 1/10 and 1/3 respectively, 

agree qualitatively with the experimental results found in literature.  

ACKNOWLEDGEMENTS 

This research is supported by the Blue-Mining project, (www.bluemining.eu), and has received 

funding from the European Union’s Seventh Framework Program for research, technological 
development and demonstration under Grant Agreement no. 604500. The authors are grateful for 

their support.  

87



 

REFERENCES 

Briggs, W. L., Van Emden, H., and McCormick, S. F. (2000). A Multigrid Tutorial (2Nd Ed.). 

Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.  

Chorin, A. J. (1968). Numerical solution of the navier-stokes equations. Mathematics of 

Computation, 22(104):pp. 745–762.  

Fadlun, E., Verzicco, R., Orlandi, P., and Mohd-Yusof, J. (2000). Combined immersed boundary 

finite difference methods for three dimensional complex flow simulations. J. Comput. Phys., 161:35–
60.  

Felice, R. D. (1996). A relationship for the wall effect on the settling velocity of a sphere at any flow 

regime. International Journal of Multiphase Flow, 22(3):527 – 533.  

Ferziger, J. H. and Peric, M. (1999). Computational Methods for Fluid Dynamics. Springer, New 

York, 2nd edition.  

Fidleris, V. and Whitmore, R. L. (1961). Experimental determination of the wall effect for spheres 

falling axiall in cylindrical vessels. British Journal of Applied Physics, 12:490–494.  

Ghosh, S. and Stockie, J. M. (2013). Numerical simulations of particle sedimentation using the 

immersed boundary method. arXiv:1304.0804v2 [physics.flu-dyn].  

Guennebaud, G., Jacob, B., et al. (2010). Eigen v3. http://eigen.tuxfamily.org.  

Peskin, C. S. (1972). Flow patterns around heart valves: A numerical method. Journal of 

Computational Physics, 10(2):252 – 271.  

Peskin, C. S. (2002). The immersed boundary method. Acta Numerica, 11:479–517.  

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes. 

Cambridge University Press, Cambridge.  

Rajani, B., Kandasamy, A., and Majumdar, S. (2009). Numerical simulation of laminar flow past a 

circular cylinder. Applied Mathematical Modelling.  

Van Leer, B. (1974). Towards the ultimate conservative difference scheme ii. monotonicity and 

conservation combined in a second order scheme. J. Comp. Phys., 14(4).  

van Wijk, J., A.M.Talmon, van Rhee (2016). Stability of vertical hydraulic transport processes for 

deep ocean minin: An experimental study. Ocean Engineering, 12:203-213 

Versteeg, H. K. and Malalasekera, W. (1995). An Introduction to Computational Fluid Dynamics, 

The finite Volume Method. Prentice Hall, London.  

Wang, Y., Shu, C., Yang, L., and Teo, C. (2017). An immersed boundary-lattice boltzmann flux 

solver in a moving frame to study three-dimensional freely falling rigid bodies. Journal of Fluids 

and Structures, 68:444 – 465.  

Zdravkovich, M. (1997). Flow Around Circular Cylinders. Oxford Science Publications.  

88


