
18th International Conference on 

TRANSPORT AND SEDIMENTATION OF SOLID PARTICLES 
11-15 September 2017, Prague, Czech Republic 

ISSN 0867-7964                                                                   ISBN 978-83-7717-269-8 

DISPERSION IN RESIDENCE TIME OF PARTICLES WITH 

POLY-DISPERSED SIZE FALLING THROUGH A LIQUID 

Kevin Cronin & Carlos Eduardo Comerlatto 

Process & Chemical Engineering, University College Cork, Cork, Ireland, 

k.cronin@ucc.ie 
The residence time of a single, non-rotating spherical particle falling through a fixed distance in a 

stationary liquid is examined. The mass of the particle is taken to be a random quantity as a result of 

diameter being distributed according to the Log-Normal probability density function (particle density 

is assumed constant). In addition to weight, buoyancy and drag, the particle is assumed to be subject 

to random effects as it falls. The effect of both the dispersion in particle diameter and random 

disturbances in particle velocity on particle residence time are quantified. It is shown that the joint 

distribution in particle diameter and residence time can be approximated by a bivariate Log-Normal 

distribution. Such an approach permits the relative influence of systematic size dispersion and velocity 

fluctuations on residence time to be easily determined. It also permits the correlation between particle 

residence time and diameter to be expressed analytically. While the method is aimed at the motion of 

a single particle, it provides a fundamental basis to design systems based on falling particle-liquid 

interactions. 
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1. INTRODUCTION 

The motion of particles falling under gravity through a fluid is ubiquitous in chemical 

engineering operations. The time taken to fall through a certain distance, the residence time, 

is one of the most important parameters needed in the design of these operations. The 

determination of this quantity is not a trivial question both because particles are usually 

dispersed in size and for any given particle, the residence time is a non-deterministic 

quantity, Boschan et al. (2016). Particle size distribution it is usually found to be positively 

skewed and the Log-Normal distribution can be used to represent it, Jeantet et al. (2008). 

Residence time distribution is also invariably found to be right skewed. The aim of this 

paper is to provide an overall probabilistic framework to quantify the dispersion in residence 

time of particles arising both from a dispersion in particle size and simultaneously including 

the influence of random disturbances in particle velocity. While there are many possible 

causes of velocity fluctuations, their overall effect can be accounted for by a single 

dispersion parameter. Having a validated approach that incorporates both these contributory 
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factors to dispersion in residence time, means strategies to control residence time dispersion 

can be assessed or compared. 

 

2. THEORY 

2.1 DETERMINISTIC ANALYSIS 

Assuming that a particle very rapidly achieves its terminal velocity, ut in the fluid, the 

expression for residence time, τ for a particle falling through a distance, H is 

tu

H
=t                 (1) 

For particles in the micron-sized range and above, the three dominant forces acting on a 

single, non-rotating, non-accelerating, spherical particle as it falls through a stationary fluid 

are gravity, buoyancy and drag force and terminal velocity can be obtained from their 

equilibrium.  
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where ρf is fluid density, ρp particle density. Terminal velocity depends on particle diameter, 

d with the dependence being a function of how the drag coefficient depends on the Reynolds 

Number in the region of interest.  The drag coefficient can be given a simple power law 

dependency on particle Reynolds Number where the accuracy of this approximation can be 

arbitrarily adjusted to any desired level of precision by refining the Reynolds Number range 

under consideration (to match the output of the accurate correlations).  

bD

a
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where a and b are power law fitting parameters and their values depend on the Reynolds 

Number range of interest. Hence terminal velocity and accordingly residence time can be 

given a power law dependency on particle diameter. 

2
1

c
dc

H
=t  

( ) b

b
f

b
f

fp

a

g
c

-

- ÷
÷

ø

ö

ç
ç

è

æ -
=

2

1

11
3

4

mr

rr
  

b

b
c

-
+

=
2

1
2         (4) 

where μf is fluid dynamic viscosity.  

2.2 PROBABILISTIC ANALYSIS 

The relationship of equation 4 between residence time and diameter can be used to quantify 

the systematic dispersion in residence time resulting from a dispersion in particle size. 

Where particle diameter is represented by the Log-Normal distribution, the probability 

density function for diameter is 

( )
ú
ú

û

ù

ê
ê

ë

é

÷÷
ø

ö
çç
è

æ -
-=

2

2

ln

2

1
exp

1

2

1

d

d

d
s

md

ds
dp

p
                             (5) 

where md and sd are the parameters of the distribution corresponding to the mean and 

standard deviation of the transformed log-normal variates of diameter. The parameters md 
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and sd can be obtained from the known (measured) values of the mean, μd and variance, σd
2 

of particle diameter using: 
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Given particle diameter is represented by the Log-Normal distribution, it can be shown that 

particle residence time will also be Log-Normally distributed according to 
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Equation 7 predicts the distribution in residence time for a population of particles with poly-

dispersed size. However there is another effect that must be considered. In reality, it is found 

that owing to the real complexity of particle-fluid interactions, for any given particle size 

there is a range of possible residence times, Fornari et al. (2016). Particle velocity can be 

decomposed into a time-invariant deterministic component (terminal velocity) and a 

randomly fluctuating component, Mucha et al. (2004). Assuming the random component is 

zero-mean, Gaussian with an auto-correlation structure having a characteristic time scale 

much shorter than other relevant timescales of the system, then particle displacement 

corresponds to that of a Wiener process with drift, Stark & Woods (1994). Then for a 

particle of known diameter falling under gravity through a viscous fluid, the dispersion in 

residence time can be characterized by the Wald distribution which describes the first 

passage time of such a process. The dispersion in residence time is characterised by two 

parameters; terminal velocity ut and particle diffusion coefficient (in the vertical direction), 

D, Nicolai et al. (1995). It can be shown that this extra aspect of dispersion in residence 

time is equivalent to amending the basic expression for residence time as 

q
dc

H
c2

1

=t                                                                                   (8) 

where q is also a Log-Normally distributed random variable with a mean value of unity, 

termed the kinetic dispersion factor. The probability density function for q is 
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The distribution is defined by a single parameter, the particle Peclet Number which is a 

function of terminal velocity and particle diffusion coefficient.  

D

Hu
Pe t=                                                                                               (10) 

In turn the diffusion coefficient is the product of variance in particle velocity times a 

characteristic de-correlation time for velocity, tc. 

cu tD 2s=                                                                                              (11) 
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Hence equation 8 enables the complete distribution in residence time to be treated as the 

product of two separate effects: one resulting from the systematic dispersion in particle size 

and the second being due to random fluctuations in particle velocity. It can be shown that 

residence time will also continue to be Log-Normally distributed and its probability density 

function will be 
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where the parameters of the distribution mτ and sτ are obtained from 
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Hence statistics such as mean residence time and variance in residence time will be given 

as 
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Note the probability density function of equation 12 converges to that of equation 7 as the 

fluctuations in particle velocity become insignificant and residence time dispersion solely 

results from the particle size dispersion. Furthermore because particle residence time, τ and 
diameter, d can be represented by the bivariate log-normal distribution as  

( )

( ) ú
ú

û

ù

ê
ê

ë

é

ïþ

ï
ý
ü

ïî

ï
í
ì

÷÷
ø

ö
çç
è

æ -
÷÷
ø

ö
çç
è

æ -
-÷÷

ø

ö
çç
è

æ -
+÷÷

ø

ö
çç
è

æ -

-
-

-
=

t

t

t

t

t

t
z

t
z

tzp
t

s

m

s

md

s

m

s

md

dss
dp

d

d

d

d

d

lnln
2

lnln

12

1
exp

11

12

1
,

22

2

2

      (15) 

where the correlation parameter, ξ is solely a function of sd and Pe. With equation 15, the 

degree of correlation between residence time and particle diameter can be obtained.  

3. MATERIALS & METHODS 

A series of experiments were conducted to estimate the magnitudes of input data for the 

theoretical expressions and to validate the predicted output. The focus was on low Reynolds 

Number systems. Six sets of spherical beads were assembled with a known size distribution. 

These included four sets of glass beads with nominal diameters 1.17 mm, 3.16 mm, 5.02 

mm and 5.91 mm all with a measured density of 2603 kg/m3. Also there was a set of 5.86 

mm diameter Nylon beads (measured density1150 kg/m3) and 5.86 mm ABS Plastic beads 

(measured density 1929 kg/m3). The sphericity and particle size distribution of each set of 

beads was measured. The behavior of the beads in three liquids were investigated; Silicone 

Oil (measured density and viscosity 970 kg/m3 and 0.227 Pa s respectively), Gear Oil 

(measured density and viscosity 880 kg/m3 and 0.091 Pa s respectively) and Paraffin Oil 

(measured density and viscosity 876 kg/m3 and 0.104 Pa s respectively). For each 

particle/liquid combination, 50 beads were dropped individually within a cylinder 

containing the fluid  (diameter 100 mm and working height 700 mm). Residence time was 

54



 

recorded. In addition, the motion was analysed with a high speed camera working at 200 

frames per second to quantify the variance and auto-correlation structure of particle 

velocity. 

4. RESULTS 

4.1 DETERMINISTIC RESULTS 

Table 1 displays the experimentally measured and theoretically predicted values for 

terminal velocity for each particle-fluid system that was examined.  
Table 1 

Terminal Velocity 

  

Fluid 

Particle 

Type 

Diameter 

(mm) 

Terminal Velocity (mm/s) Reynolds No. 

   Experimental Theoretical  

Silicone Oil Glass A 1.17 3.29 3.12 0.02 

Silicone Oil Glass B 3.16 22.0 20.64 0.30 

Silicone Oil Glass C 5.02 50.0 45.30 1.07 

Silicone Oil Glass D 5.91 69.3 58.94 1.75 

Gear Oil Glass B 3.16 63.7 51.51 1.95 

Silicone Oil Nylon 5.86 7.45 7.04 0.19 

Gear Oil Nylon 5.86 30.95 25.10 1.75 

Silicone Oil ABS 5.86 37.8 34.22 0.95 

Paraffin Oil Nylon 5.86 17.9 18.65 0.88 

Theoretical terminal velocity was calculated using the power law approximation method 

and applying a correction for wall effects. Reynolds Number (based on experimental 

velocity) is also shown. The level of agreement is good with the theoretical value generally 

being within 10 % of the predicted value. Reynolds Numbers are in the region from 0.02 to 

2.0. Note magnitudes of the drag coefficient fitting power law parameters a and b will be 

close to the theoretical Stokes values of 24 and 1 respectively for the low Reynolds Number 

prevailing in this study. 

4.2 PROBABILISTIC RESULTS 
Table 2a quantifies the size-dispersion input data summarizing the distribution in particle 

diameter for the different sets of beads together with the corresponding Log-Normal density 

function parameters md and sd. It can be seen that for most sets of beads, the particle size 

distribution is tightly controlled with a low standard deviation to mean ratio.  
Table 2a 

Particle diameter dispersion 

Particle Diameter Statistics Diameter Log-Normal 

Parameters 

 Mean (m) Std. Dev. (m) md sd 

Glass A 1.172 x 10-3 0.10 x 10-3 -6.753 0.085 

Glass B 3.161 x 10-3 0.18 x 10-3 -5.758 0.057 

Glass C 5.02 x 10-3 0.03 x 10-3 -5.295 0.006 

Glass D 5.91 x 10-3 0.08 x 10-3 -5.131 0.014 

Nylon 5.86 x 10-3 0.02 x 10-3 -5.140 0.003 

ABS 5.86 x 10-3 0.016 x 10-3 -5.139 0.003 
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Figure 1 illustrates a measured velocity versus time history for the Nylon bead falling in 

Silicone oil showing the significance of the fluctuations. It is these fluctuations combined 

with the dispersion in particle size that produces the variability in residence time. Table 2b 

lists the input data needed for evaluation of the parameters associated with the probabilistic 

analysis; specifically the measured diffusion coefficient, the Peclet Number and the 

parameters for the residence time distribution. A low value for the Peclet Number is 

associated with low terminal (mean) particle velocity and a large amount of velocity 

fluctuations. The diffusion coefficient is obtained by a time-series analysis of the random 

component of particle velocity to obtain σu
2 and tc needed for equation 11. Finally table 3 

contains the experimentally measured mean and standard deviation in residence time 

together with the corresponding theoretically predicted values.  

 

 
Fig 1 Experimental particle velocity versus time 

Table 2b 

Input dispersion parameters to calculate residence time 

   Diffusivity Peclet Res. Time Log-Normal Parameters 

Fluid Particle D (mm2/s) Pe mτ sτ 

Silicone Oil Glass A 3.66 629.13 5.3897 0.180 

Silicone Oil Glass B 65.23 236.23 3.4492 0.137 

Silicone Oil Glass C 227.20 154.05 2.6169 0.120 

Silicone Oil Glass D 348.33 139.28 2.3336 0.132 

Gear Oil Glass B 162.81 273.61 2.5342 0.129 

Silicone Oil Nylon 41.23 126.55 4.4602 0.130 

Gear Oil Nylon 147.09 147.27 3.1882 0.129 

Silicone Oil ABS 200.60 132.04 2.8783 0.130 

Paraffin Oil Nylon 109.28 114.68 3.4854 0.130 
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Table 3 

Experimental and theoretical residence time dispersion 

System Experimental Res. Time Theoretical Res. Time 

 Mean (s) Std. Dev. (s) Mean (s) Std. Dev. (s) 

Silicone Oil – Glass A 212.7 21.7 222.71 40.39 

Silicone Oil – Glass B 31.8 2.84 31.77 4.36 

Silicone Oil – Glass C 14 0.158 13.79 1.66 

Silicone Oil – Glass D 10.1 0.122 10.41 1.38 

Gear Oil- Glass B 11 0.634 12.71 1.65 

Silicone Oil-Nylon 93.92 5.88 87.23 11.35 

Gear Oil – Nylon 22.62 0.9 24.45 3.18 

Silicone Oil  - ABS 18.5 0.298 17.93 2.33 

Paraffin Oil – Nylon 39.1 1.79 32.91 4.28 

 

The overall level of agreement is good. The predicted level of mean residence time is close 

to the experimentally measured value because predicted and measured terminal velocity are 

close in magnitude. The magnitude of dispersion in residence time is captured less 

accurately with the model consistently over-predicting the standard deviation. However the 

pattern of dispersion between the different fluid-particle systems is reflected in the results. 

The reason for the discrepancy lies in some shortcomings of the terminal velocity equation 

(the deterministic model) and certain simplifications in the probabilistic approach.  Note the 

standard deviation for the first entry in table 3 is high reflecting the very long mean 

residence time. Characteristically for the above systems approximately two thirds of the 

variability in residence time is attributable to size dispersion whilst the remaining third 

results from fluctuations in velocity.  

5. CONCLUSIONS 

The total dispersion in residence time depends on the amount of dispersion in particle 

diameter (quantified by the size of sd) and also will depend on the magnitude of the 

randomness in particle motion as quantified by the Peclet Number. As the system Peclet 

Number decreases reflecting higher levels of particle velocity fluctuations, random 

dispersion in residence time increases and as a corollary, a decreasing proportion of the 

variability in residence time is due to the variability in particle size and so a focus on size 

dispersion and attempts to minimize it become less rewarding in terms of process control. 

The approach here can be shown to correspond to the standard approach for calculation of 

residence time, Levenspiel (1999). Further work is needed to check if the decomposition of 

residence time adopted here will be valid outside the Stokes regime and to extend the 

methodology to a population of particles falling simultaneously in a vessel. 
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